skip to main content


Search for: All records

Creators/Authors contains: "Thomas, Jennie L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Near-surface mercury and ozone depletion events occur in the lowest part of the atmosphere during Arctic spring. Mercury depletion is the first step in a process that transforms long-lived elemental mercury to more reactive forms within the Arctic that are deposited to the cryosphere, ocean, and other surfaces, which can ultimately get integrated into the Arctic food web. Depletion of both mercury and ozone occur due to the presence of reactive halogen radicals that are released from snow, ice, and aerosols. In this work, we added a detailed description of the Arctic atmospheric mercury cycle to our recently published version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem 4.3.3) that includes Arctic bromine and chlorine chemistry and activation/recycling on snow and aerosols. The major advantage of our modelling approach is the online calculation of bromine concentrations and emission/recycling that is required to simulate the hourly and daily variability of Arctic mercury depletion. We used this model to study coupling between reactive cycling of mercury, ozone, and bromine during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) spring season in 2020 and evaluated results compared to land-based, ship-based, and remote sensing observations. The model predicts that elemental mercury oxidation is driven largely by bromine chemistry and that particulate mercury is the major form of oxidized mercury. The model predicts that the majority (74%) of oxidized mercury deposited to land-based snow is re-emitted to the atmosphere as gaseous elemental mercury, while a minor fraction (4%) of oxidized mercury that is deposited to sea ice is re-emitted during spring. Our work demonstrates that hourly differences in bromine/ozone chemistry in the atmosphere must be considered to capture the springtime Arctic mercury cycle, including its integration into the cryosphere and ocean. 
    more » « less
  2. Abstract

    Elevated concentrations of atmospheric bromine are known to cause ozone depletion in the Arctic, which is most frequently observed during springtime. We implement a detailed description of bromine and chlorine chemistry within the WRF‐Chem 4.1.1 model, and two different descriptions of Arctic bromine activation: (1) heterogeneous chemistry on surface snow on sea ice, triggered by ozone deposition to snow (Toyota et al., 2011https://doi.org/10.5194/acp-11-3949-2011), and (2) heterogeneous reactions on sea salt aerosols emitted through the sublimation of lofted blowing snow (Yang et al., 2008,https://doi.org/10.1029/2008gl034536). In both mechanisms, bromine activation is sustained by heterogeneous reactions on aerosols and surface snow. Simulations for spring 2012 covering the entire Arctic reproduce frequent and widespread ozone depletion events, and comparisons with observations of ozone show that these developments significantly improve model predictions during the Arctic spring. Simulations show that ozone depletion events can be initiated by both surface snow on sea ice, or by aerosols that originate from blowing snow. On a regional scale, in spring 2012, snow on sea ice dominates halogen activation and ozone depletion at the surface. During this period, blowing snow is a major source of Arctic sea salt aerosols but only triggers a few depletion events.

     
    more » « less
  3. Abstract

    Reactive chlorine and bromine species emitted from snow and aerosols can significantly alter the oxidative capacity of the polar boundary layer. However, halogen production mechanisms from snow remain highly uncertain, making it difficult for most models to include descriptions of halogen snow emissions and to understand the impact on atmospheric chemistry. We investigate the influence of Arctic halogen emissions from snow on boundary layer oxidation processes using a one‐dimensional atmospheric chemistry and transport model (PACT‐1D). To understand the combined impact of snow emissions and boundary layer dynamics on atmospheric chemistry, we model Cl2and Br2primary emissions from snow and include heterogeneous recycling of halogens on both snow and aerosols. We focus on a 2‐day case study from the 2009 Ocean‐Atmosphere‐Sea Ice‐Snowpack campaign at Utqiaġvik, Alaska. The model reproduces both the diurnal cycle and high quantity of Cl2observed, along with the measured concentrations of Br2, BrO, and HOBr. Due to the combined effects of emissions, recycling, vertical mixing, and atmospheric chemistry, reactive chlorine is typically confined to the lowest 15 m of the atmosphere, while bromine can impact chemistry up to and above the surface inversion height. Upon including halogen emissions and recycling, the concentration of HOx(HOx = OH + HO2) at the surface increases by as much as a factor of 30 at mid‐day. The change in HOxdue to halogen chemistry, as well as chlorine atoms derived from snow emissions, significantly reduce volatile organic compound lifetimes within a shallow layer near the surface.

     
    more » « less